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ABSTRACT: This study found that the generalized viscosity model for suspensions re-
cently published by this author could be successfully applied to polymer solutions to
generate both Huggins’ equation and Kraemer’s equation. It was also found that the
solute (particle) interaction coefficient, s, as evaluated from the generalized viscosity
model, characterizes the solubility of either a solute in a solution or a particle in a
suspension. Suspensions would appear to be characterized as having a solute/particle
interaction coefficient of s ¢ 1. Poor to intermediate solutions would be characterized
as having a solute/particle interaction coefficient of 0 ° s õ 1. Good to excellent
solutions would then be characterized as having solute/particle interaction coefficients
of s õ 0. It was also found that a maximum in the reduced viscosity was predicted
using the generalized viscosity model as applied to a Huggins-type plot for solutions.
The experimental literature data of Hermans et al. confirmed that such a maximum
can exist for a Huggins-type plot. Based on the available range of literature values of
Kraemer’s constant and other theoretical considerations from this study, the solute/
particle interaction coefficient was found to have an apparent range from 0 [h] ° s
° [h] , where [h] is the Einstein-type intrinsic viscosity. q 1997 John Wiley & Sons, Inc.
J Appl Polym Sci 66: 2319–2332, 1997

Key words: intrinsic viscosity; packing fraction; solutions; suspensions; particle (sol-
ute) interaction coefficient; relative viscosity; Kraemer’s constant; Huggins’ constant;
generalized suspension viscosity equation; suspension viscosity

INTRODUCTION cant concentrations for both solutions and
suspensions continues to be an area of concern.4,5

The influence of concentration on the viscosity of Recently, this author6–9 described the deriva-
polymer solutions continues to be of interest for tion of a new generalized equation that addresses
such applications as coatings, paints, foods, oil the viscosity of suspensions. This new-generalized
recovery, and water treatment.1 For many of these suspension equation has been shown to success-
and other applications the evaluation of low con- fully predict the effects of particle/solvent interac-
centration viscosities continues to be useful to tion, particle size, particle size distribution, and
evaluate the intrinsic viscosity, [h] , of both poly- packing fraction on suspension viscosity. Because
mer solutions2,3 and polymer suspensions.4 How- this equation was found to work so successfully
ever, the lack of an adequate formulation proce- on suspensions, it was strongly suspected that the
dure to consistently predict viscosities at signifi- concentration/viscosity relationship for solutions

could also be effectively predicted using this equa-
tion. The objective of this artricle, then, is to show

Journal of Applied Polymer Science, Vol. 66, 2319–2332 (1997)
q 1997 John Wiley & Sons, Inc. CCC 0021-8995/97/122319-14 how this new suspension equation can predict the
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2320 SUDDUTH

standard solution equations used to calculate in-
h Å hoS1 / [h]w / S [h]

2 DH[h] / S s

wn
DJw2

trinsic viscosity such as Huggins’ equation and
Kraemer’s equation. Another objective was to elu-
cidate some particularly interesting new charac-

/ S [h]
6 DH[h]2 / 3S s

wn
D [h]teristics of this generalized suspension equation

that applies specifically to solutions.

/ S s

wn
DSs / 1

wn
DJw3 / rrrD (3)

Development of the Generalized Suspension
Viscosity Equation for Solutions

In an earlier article6 this author introduced the For a suspension, when [h]Å 2.5, it is apparent
following generalized equation to describe the vis- that the first two terms are the Einstein18,19 lim-
cosity–concentration relationship of suspensions. iting terms for all possible values for the particle

interaction coefficient, s, and the packing frac-
tion, wn . It has also been found that s and wn

ln(h /ho ) Å S [h]wn

s 0 1DHSwn 0 w

wn
D10s

0 1J always occur as a paired ratio for second-order
and higher expansion terms. Because these two
parameters are paired in second-order and higher

for s x 1 (1) terms, if s Å 0.0, then the packing fraction does
not enter into the viscosity calculation. This obser-

For the case where s Å 1, the resulting equa- vation is important because it suggests that when
tion can be written as the solute (particle) interaction coefficient is zero

that solute (particle) packing is not important
and that solute (particles) molecules have a sig-

ln(h /ho ) Å 0 [h]wnlnSwn 0 w

wn
D (2) nificantly reduced interference with each other.

Further arguments that address the claim that
particles have a significantly reduced interaction
with each other when sÅ 0.0 have been addressedwhere h is the suspension viscosity, ho is the vis-
previously.6cosity of suspending medium, [h] is the intrinsic

Another important observation is that if theviscosity, s is the particle interaction coefficient,
solute (particle) interaction coefficient is s ¢ 1,w is the suspension particle volume concentration,
then eq. (1) becomes undefined if w ú wn . Forand wn is the particle packing fraction.
this case, it is also apparent that as the soluteThis generalized equation has been found to
(particle) concentration, w, approaches the pack-include most of the primary suspension equations
ing fraction, wn , then the viscosity of the suspen-previously appearing in the literature, as re-
sion or solution approaches infinity. Based on thisviewed by Rutgers.10,11 For example, by varying
argument, it would be expected that most well-the particle interaction coefficient, s, the Arrhen-
defined suspensions would have a particle interac-ius equation12,13 results when s Å 0, the Kreiger-
tion coefficient with s ¢ 1.Dougherty equation14 results when s Å 1, and

If the particle interaction coefficient is s õ 1,when s Å 2 the Mooney equation15 results. The
then as the solute (particle) concentration, w, ap-equations resulting from these values of the parti-
proaches the packing fraction, wn , the viscosity ofcle interaction coefficient are summarized in Ta-
the suspension or solution described by eq. (1)ble I, where the ‘‘crowding factor,’’ k , can also be
approaches the following limit:defined as kÅ 1/wn . Fractional values for the par-

ticle interaction coefficient were also found6 to be
useful and perfectly acceptable when optimizing

ln(h /ho ) r S [h]wn

1 0 sD for sõ 1 and w r wn (4)the empirical fit of the literature data of Vand16

and Eiler.17

Further insight into the characteristics of the
interaction parameter, s, and the packing frac- This finite limit for systems with s õ 1 would

suggest that for this case the solute (particle) de-tion, wn , can be obtained from the series expan-
sion of the generalized suspension equation. A velops an improved miscibility in the solvent con-

sistent with approaching more solution-like be-MacLaurin series expansion for eq. (1) gives
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Table I Generalized Suspension Viscosity Equation for Selected Values of the Particle Interaction
Coefficient, s

Particle Interaction Previous Reference for
Coefficient s Simplified Form of Generalized Equation Equation Derivation

02
ln(h/h0) Å S[h]

3 D{3kw2 0 k2w3 0 3w}

01
ln(h/h0) Å S[h]

2 D{kw2 0 2w}

0 ln(h/h0) Å [h]w Arrhenius (1887, 1917)

.5
ln(h/h0) Å S2[h]

k D(1 0 (1 0 kw).5)

1 Krieger-Dougherty (1959)
ln(h/h0) Å S0[h]

k Dln(1 0 kw)

2 Mooney (1951)
ln(h/h0) Å [h] H w

1 0 kwJ
3

ln(h/h0) Å S[h]
2 DH2w 0 kw2

(1 0 kw)2J
4

ln(h/h0) Å S[h]
3 DH3w 0 3kw2 / k2w3

(1 0 kw )3 J
havior. As a true solution system is approached,
then the solute (or particle) would be expected r Å M

NVH
(6)

to approach the solubilizing characteristics of the
solvent. As the different distinguishing solubiliz-

where N is Avagadro’s number (molecules/ging characteristics between the solute (or parti-
mol) , M is the solute molecular weight (g/g mol),cle) and the solvent continue to disappear, then
r is the solute molecular density (g/cc of solutethe packing fraction for the solute (or particle) in
volume), c is the concentration (g/cc of solutionthe solvent would be expected to approach wn
volume), Vp is the volume of particle or soluteÅ 1.0.
(cc) , VH is the solute hydrodynamic volume perAs the solute (particle) interaction coefficient
molecule (cc/molecule), Vs is the volume of sol-is reduced below sÅ 1, then, the solute (particles)
vent (cc) .molecules and the solvent molecules would be ex-

Substituting into eq. (1) then givespected to approach a significantly reduced inter-
ference with each other and to approach more de-
sirable miscibility and potentially even solubility. Ln(h /ho ) Å

Huggins’ and Kraemer’s Equations for Solutions
Developed from the Generalized Suspension
Equation

S [h]
r Drwn

s 0 1 H Srwn 0 c
rwn

D10s

0 1J
Equation (1) can be converted from a suspension
equation in terms of volume fraction, w, to a solu-

for s x 1 (7)tion viscosity equation using a solute concentra-
tion, c , in grams per cc of solution using an ap-

It will now be shown that eq. (7) can be ex-proach described by Huggins,20 Elias,21 and
panded to develop both Kraemer’s equation andSimha et al.22 with the following relationships:
Huggins’ equation to describe solution behavior.
It is interesting that eq. (7) has the same numberw Å Vp

Vp / Vs
Å c

r
(5)

of variables as eq. (1), with rwn replacing wn and
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2322 SUDDUTH

([h] /r ) replacing [h] . Note , however, that the sol- Shsp

c D Åute interaction coefficient, s, has the same form
in both equations.

Equation (7) can be expanded by developing a S [h]
r D / S [h]

r D2HS1
2DMacLaurin series for the right-hand side of this

equation to give

/ S1
2DS r

[h] DS s

rwn
DJcS ln(h /ho )

c D Å
/ S1

6DS [h]
r DH S [h]

r D2

/ 3S s

rwn
DS [h]

r DS [h]
r D / S [h]

r D2HS1
2DS r

[h] DS s

rwn
DJc

/ S s

rwn
DSs / 1

rwn
DJc2 / rrr (12)

/ S1
6DS [h]

r DS s

rwn
DSs / 1

rwn
Dc2 / rrr (8)

Equation (12) can then be reduced to the Hug-
gins’ equation24 at low concentrations as

Equation (8) can then be reduced to the
Kraemer23 equation at low concentrations as S [hsp

c D Å S [h]
r D / S [h]

r D2HS1
2D / KJc

S ln(h /ho )
c D Å

Å S [h]
r D / S [h]

r D2

K *c (13)

S [h]
r D / S [h]

r D2HS1
2DS r

[h] DS s

rwn
DJc

The limits of eqs. (12) and (13) as c r 0 give

Å S [h]
r D / S [h]

r D2

{K }c (9) Limit
cr0

Shsp

c D Å S [h]
r D (14)

The limit of eqs. (8) and (9) as c r 0 give It is apparent that the constants from the Hug-
gins’ and Kraemer equations are related as

Limit
cr0

S ln(h /ho )
c D Å S [h]

r D (10) K * Å ( 1
2) / K (15)

Several authors21,25 have previously shown
Because eq. (3) was formed from an expansion that this relationship must exist between Hug-

of eq. (1) and because eq. (7) is simply another gins’ and Kraemer’s constants. Some authors26

form of eq. (1), then eq. (7) can also be expanded have arbitrarily included a negative sign in front
using eq. (3) from a suspension equation in terms of Kraemer’s constant; however, because Kraem-
of volume fraction, w, to a solution viscosity equa- er’s23 original article did not include such a nega-
tion using a solute concentration, c , and the solute tive sign, we will conveniently chose this original
molecular density, r, along with the following re- option. At this point it is useful to address the
lationship relative magnitude of these constants. Elias21 in-

dicates that good solvents, by definition, have a
Huggins’ constant of less than 0.5 but typically

hsp Å
h 0 ho

ho
(11) range from 0.25–0.35. Flory25 indicates that Hug-

gins’ constants for good solvents usually range
from 0.35–0.4. Elias21 also indicates that inter-
mediate, poorer solvents and theta solvents wouldwhere hsp is the specific viscosity, to give

8ED3 5018/ 8ED3$$5018 11-05-97 09:06:47 polaa W: Poly Applied
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be expected to have Huggins’ constants greater an additional useful parameter that could be used
to generate an independent measurement of solu-than 0.5. Specifically, Elias21 claims that theta

solvents would be expected to have a Huggins’ tion molecular weight similar to that of the solu-
tion intrinsic viscosity, ([h] /r ) , which is currentlyconstant in the range of 0.5 to 0.7. Simha et al.22

also summarized data from the literature and in- used to make molecular weight measurements.
If Kraemer’s constant must be negative to yielddicate that the Huggins’ constant can vary from

approximately 0.33 to 0.77. The experimental a Huggins’ constant of less than 0.5 for good to
excellent solute/solvent systems, then at least oneHuggins’ constants from the literature, then, ap-

pear to fall well within the range of 0 ° K * ° 1. of the constants in eq. (16) must be negative. Be-
cause the packing fraction range from 0 õ wnThis range for the Huggins’ constant would corre-

spond to a range for Kraemer’s constant of 00.5 ° 1 cannot be negative by definition, then either
the solute (or particle) interaction coefficient, s,° K ° 0.5.

If a good solvent requires a Huggins’ constant must be negative or the Einstein intrinsic viscos-
ity, [h] , must be negative. This author27 hasof less than 0.5, then a negative Kraemer’s con-

stant would appear to be required. The Kraemer shown that the Einstein intrinsic viscosity, [h] ,
can be negative if the shear modulus of the soluteconstant derived from eq. (9) can be written as
(or particle) is much less than the shear modulus
of the solvent (or matrix). However, because the

K Å S1
2DS r

[h] DS s

rwn
D Å S1

2DS s

[h]wn
D (16) intrinsic viscosity, ([h] /r ) , for most polymer solu-

tions is predominantly positive and because the
solute molecular density, r, cannot be negative,
the obvious conclusion is that for polymer solutesEquation (7) can, in most cases, be used to fit

solution data over a large concentration range to or for particles the interaction coefficient, s, must
be negative to yield a Huggins’ constant of lessgive the solution intrinsic viscosity, ([w] /r ) , the

solute/particle interaction coefficient, s, and the than 0.5.
Because we have already seen that eq. (1) canpacking fraction (assumed to be, wn Å 1). In addi-

tion, if the same solution viscosity data at low be modified to describe solutions as indicated by
eq. (7), then likewise, eq. (1) can be convenientlyconcentration can be used to obtain Kraemer’s

constant, K , then eq. (16) can be used to obtain used to describe solutions over the whole concen-
tration range. With this assumption, then, the ef-the Einstein-type intrinsic viscosity, [h] , as
fect of the solute (or particle) interaction coeffi-
cient on solution viscosity is illustrated in Figure

[h] Å S1
2DSsKD (17) 1 using the general suspension viscosity equation

described by eq. (1). In this figure the solute inter-
action coefficient ranges from 02 to /2 for a con-
stant packing fraction of wn Å 1, and the Einsteinwhich, in turn, can be used to estimate the solute

molecular density, r, as limiting intrinsic viscosity of [h] Å 2.5. The data
from Figure 1 has also been replotted in Figures
2 and 3 consistent with a Kraemer-type plot

r Å [h]

S [h]
r D (18)

S ln(h /ho )
w

vs. wD
In addition, eq. (7) can be solved directly for the

parameter, rwn , to allow the molecular density, r, (Fig. 2) and a Huggins-type plot
to also be calculated as

r Å rwn Shsp

w
vs. wD

(If a solution is assumed @ wn Å 1) (19)

The significance of the isolation of the molecu- (Fig. 3). Note that negative solute (particle) in-
teraction coefficients do give negative slopes onlar density, r, described by either eqs. (18) or (19)

is that molecular density, r, would appear to be the Kraemer-type plot as expected. Also note that
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2324 SUDDUTH

Figure 1 Generalized viscosity model for suspensions at different solute/particle in-
teraction coefficients.

a solute interaction coefficient of s Å 0 gives a positive at low solute volume concentrations, f;
however, at high-volume concentrations the slopeconstant value of
can become negative for some solute/particle in-S ln(h /ho )

w D teraction coefficients, as indicated in Figure 3.
This means that for some negative values of s
the Huggins’ plot goes through a maximum. This

for all concentrations. This result is manifested mathematical maximum can be evaluated by re-
in Figure 1 simply as a constant slope of ln(h /ho ) writting eq. (1) in terms of specific viscosity, hsp ,
versus w for r Å 0 at all concentrations. Again, a to give
solute interaction coefficient of r Å 0 has been
shown6 to be consistent with a significantly re-
duced interaction between solute molecules be- Shsp

w D Å 1
w

(eF (w ) 0 1) (20)
cause this condition has no dependence on the
packing fraction. The significance of a negative
solute interaction coefficient has not yet been fully

whereelucidated.

Elucidation of the Maxima That Can Occur in
Huggins-Type Plots for Solution and/or F (w ) Å S [h]wn

s 0 1DH Swn 0 w

wn
D10s

0 1J
Suspension Data
When the solute interaction coefficient, s, is nega-
tive, the slope of the Huggins’ plot is normally for s x 1 (20a)
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HUGGINS AND KRAEMER EQUATION FOR POLYMER SOLUTION EVALUATIONS 2325

Figure 2 Generalized viscosity model at different particle interaction coefficients, s,
for Ln(h /ho ) /f versus volume fraction, f.

Now by setting the following deriviative to zero a minimum or an inflection point. Some additional
evaluation process needs to be addressed to deter-
mine if the condition of w Å 0 is indeed a maxi-
mum. Other mathematical solutions to eq. (22)
must be solved by trial and error. Maxima of the

dShsp

w D
dw

Å 0 (21)
reduced viscosity, (hsp /w ) , as described by eq.
(20), are indeed indicated in the Huggins-type

the maximum for eq. (20) can then be shown to plots in Figure 3 at volume concentrations, w,
occur when other than w Å 0.

A maximum in a Huggins-type plot has been
found experimentally by Hermans and Paals28 for
the concentration dependence of the reduced vis-
cosity, (hsp /c ) , of sodium pectinate in solutions1 Å

Swn 0 w

wn
Ds

w[h] S1 0 expSS [h]wn

s 0 1D of different NaCl concentrations (in mol/liter at
277C) as indicated in Figure 4. Note in this figure
that the maximum in the reduced viscosity moves

1H1 0 Swn 0 w

wn
D10sJD D (22) to higher concentration, c , as both the intrinsic

viscosity and the particle or solute interaction co-
efficient changes as a result of a different salt

Although the concentration w Å 0 always pro- concentration in the solution.
vides a correct solution to eq. (22), it is not always This result is easier to visualize from the data

generated for several generalized intrinsic viscos-a maximum because this condition could also be
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2326 SUDDUTH

Figure 3 Generalized viscosity model at different particle interaction coefficients, s,
for hsp /f versus volume fraction, f.

ity values and associated solute/particle interac- volume concentrations for the maximum reduced
viscosity as the salt concentration was increasedtion coefficients, as indicated in Figures 5 and 6.

In Figure 5 each curve represents maxima in the is probably more sensitive to the reduction of the
value of the intrinsic viscosity than to a shift inreduced viscosities plotted against the concentra-

tion at which these maxima occur. Note in Figure magnitude of the solute/particle interaction coef-
ficient.5 that for a constant Einstein intrinsic viscosity

the maximum reduced viscosity increased with an Based on the data of Hermans and Paals it is
also apparent that a maximum obtained from aincrease in the volume concentration at which

this maximum occurs. However, the data of Her- Huggins plot may make it difficult to obtain a
linear plot of the data to obtain the intrinsic vis-mans et al.28 in Figure 4 indicates a drop in the

maximum reduced viscosity as the salt concentra- cosity, ([h] /r ) , as the concentration approaches
zero, c r 0. On the other hand, it will be showntion is increased. In addition, there is also an ap-

parent decrease in the intrinsic viscosity with an that a straight line as c r 0 could potentially have
been obtained for the data of Hermans andincrease in salt concentration in the solvent.

The solute/particle interaction coefficients as- Paals28 by simply plotting a Kraemer-type plot of
sociated with the data in Figure 5 are summarized
in Figure 6 as a function of the volume concentra-
tion at the maximum reduced viscosity. Note in S ln(h /ho )

c D
Figure 6 that the solute/particle interaction coef-
ficients associated with the data in Figure 5 in-
crease with an increase in the volume concentra-
tion at the maximum reduced viscosity. The com- versus c instead of the reduced viscosity. More

importantly, the sign and relative magnitude ofbined results of Figures 5 and 6 indicate that for
the data of Hermans and Paals the shift to higher the solute interaction coefficient would have been
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viscosity, [h] . Although the concentration at w
Å 0 always provides a correct solution to eq. (23),
it is not always a maximum because this condition
could also be a minimum or an inflection point.
However, for a Kraemer plot of

S ln(h /ho )
w D

versus w, it can be shown that a concentration of
w Å 0 always gives a minimum when s ú 0 and
a maximum when sõ 0. Interestingly, it can also
be shown that for a Kraemer-yype plot there are
no other minima or maxima between the concen-
trations of w Å 0 and w Å wn other than at w Å 0.

At this point it is apparent that good solvents
of polymer solutes are typically characterized by
having a negative Kraemer’s constant and an as-
sociated negative solute/particle interaction coef-
ficient. It has been found, however, that there ap-
pears to be a limit of the definition of solubility
for good to excellent solvents as described by
Kraemer’s constant. To illustrate this point, sev-
eral Kraemer constants have been calculated in
Figures 7 and 8 for the condition that yields aFigure 4 Concentration dependence of the reduced
maximum in the reduced viscosity in a Hugginsviscosity, hsp /c , of sodium pectinate in solutions of dif-
plot as described by eq. (22) and correlated withferent NaCl concentrations (in mol/L) at 277C (data
the volume concentration at that location. The re-of J. J. Hermans and D. T. F. Paals; republished with

permission of the authors). sults in Figures 7 and 8 have been calculated for
all possible negative solute interaction coefficients
that satisfy eq. (22) for three different values ofobtained from a direct evaluation of Kraemer’s
the Einstein type intrinsic viscosity, [h] . Noteconstant.
that the calculated results in Figures 7 and 8 are
the same calculated results utilized in Figures 5

Lower Limit of the Solute/Particle Interaction and 6 as well. As indicated in Figure 7, Kraemer’s
Coefficient for Good to Excellent Solvents constants for negative solute/particle interaction
as Described by an Apparent Lower Limit coefficients range from approximately 0 to 00.5
for Kraemers Constant while the volume concentrations at the maximum

reduced viscosity range from w Å 1 to w Å 0. ThisThe location of the extrema for a Kraemer plot of
would correspond to a Huggins’ constant range
from 0.5 to 0. The results in Figure 8, calculatedS ln(h /ho )

w D for two different packing fractions (wn Å 1 and wn

Å 0.75) indicate that Kraemer’s constant ap-
proaches zero as the volume concentration at the

versus w as evaluated from eq. (1) can be shown maximum reduced viscosity approaches the pack-
to occur when ing fraction w r wn . The results in Figures 7 and

8 also indicate that Kraemer’s constant ap-
1 Å Swn 0 w

wn
D0sSwn 0 sw

wn
D (23) proaches a minimum value of K r 00.5 as the

concentration approaches zero. This result sug-
gests that the absolute value of the solute interac-
tion coefficient approaches the following maxi-Note that the maxima or minima as calculated

from eq. (23) are not a function of the intrinsic mum limit:
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2328 SUDDUTH

Figure 5 Maximum reduced viscosity versus volume fraction at maximum reduced
viscosity for generalized viscosity equation.

ÉsÉ r S [h]
r D (rwn ) Å [h]wn (24) S ln(h /ho )

c D Å S [h]
r D / S [h]

r D2

{B2}c

Because the maximum packing fraction has / S [h]
r D3

{B3}c2 / rrrS [h]
r Dn

{Bn }cn01 (25)
been found to approach wn Å 1 when Kraemer’s
constant approaches K r 00.5 as the volume con-
centrations approach w r 0 at the maximum re-

andduced viscosity, then the lower limit for the sol-
ute/particle interaction coefficient, s, for excel-
lent solvents appears to approach the negative of Shsp

c D Å S [h]
r D / S [h]

r D2

{A2}c / S [h]
r D3

{A3}c2the Einstein type intrinsic viscosity, 0 [h] .

Generalized Viral Coefficients for an Infinite Series
/ rrrS [h]

r Dn

{An }cn01 (26)with the Overlap Parameter as Derived from
the Generalized Suspension Equation

It should also be noted that eqs. (8) and (12) can
be written in the more general case as the follow- It is also apparent that these constants are in-

terrelated, because in general when n ¢ 2ing series:
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Figure 6 Solute/particle interaction coefficient versus volume fraction at maximum
reduced viscosity for generalized viscosity equation.

(16). Two additional examples by comparison to
An Å S 1

n !D / Bn / Cn (27) eq. (12) would include:

where if B3 Å
F3(0)

3!(F1(0))3 Å S1
6DS r

[h]D
2S s

rwn
DSs / 1

rwn
D

F (w ) Å S [h]wn

s 0 1DH Swn 0 w

wn
D10s

0 1J (28)
Å S1

6DS 1
[h] D

2S s

wn
DSs / 1

wn
D (31)

and if C2 Å 0, then
C3 Å S 1

3!DS3F2(0)F1(0)
(F1(0))3 D Å S1

2DS s

rwn
DS r

[h] D
Bn Å

Fn (0)
n ! (F1(0))n (29)

Å S1
2DS s

wn
DS 1

[h] D (32)
Cn Å

Dn (0)
n ! (F1(0))n (30)

where Dn (0) is a function of a combination of de- Simha et al.22 have indicated that general con-
siderations have suggested that the concentrationrivatives of F (w ) consistent with a McLauren se-

ries evaluation to arrive at the extended form of dependence of ‘‘normal’’ colloid suspensions can
be represented by a concentration power series aseq. (12). For example, it can easily be shown that

B2 is the Kraemer constant K as described by eq. indicated for (hsp /c ) versus c by eq. (25). Simha
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Figure 7 Kraemer’s constant versus volume fraction at maximum reduced viscosity
for generalized viscosity equation.

et al.22 have also pointed out that the viral con- the non-Newtonian flow in these systems is partly
due to the destruction of aggregates that changesstants in eq. (25) have been found to be functions

of molecular weight heterogeneity, degree of the rearrangement of suspended particles by
shear. Simha et al.34 also found that if (hsp /c ) isbranching, crosslinking, amounts of polar con-

tamination in the polymer sample, and the sensi- plotted against ([h] /r )c instead of c that the ef-
fects of molecular weight on viscosity are essen-tivity of the solute to the solvent as described by

good and poor solvents. tially eliminated for good solvents. Consequently,
eqs. (25) and (26) would appear to be the ultimateThe quantity sometimes referred to as the over-

lap parameter, ([h] /r ) c Å [h]w, is included in forms preferred by the scientific community for
solution viscosity applications. More importantly,each term of both eqs. (25) and (26) to the same

power as the number of the term in the series. the model presented in this study is consistent
with these objectives.This overlap parameter was first introduced using

an empirical equation developed by Schulz and
Blaschke29 and extended by Huggins.23 The over-
lap parameter, ([h] /r )c Å [h]w, identified in con- CONCLUDING REMARKS
junction with eq. (25) has been discussed in terms
of several ranges by Simha et al.22 Below w Å 0.25 In earlier studies it has been shown that a change

in magnitude of particle interaction coefficient inMaron et al.30–32 found that latexes are mostly
Newtonian with little shear sensitivity but they the generalized viscosity model for suspensions

can yield the standard viscosity equations typi-become very non-Newtonian and very sensitive to
shear rate above a concentration of w Å 0.4. cally used to evaluate suspension viscosities. For

example, by varying the particle interaction coef-Simha33 suggested that for concentrated solutions
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Figure 8 Kraemer’s constant versus volume fraction at maximum reduced viscosity
for generalized viscosity equation.

ficient, s, the Arrhenius equation results when s 0 ° s ° 1. Good to excellent solutions are then
characterized as having solute or particle interac-Å 0, the Kreiger-Dougherty equation results

when s Å 1, and when s Å 2 the Mooney equation tion coefficients of s õ 0.
Based on available literature values, this studyresults. Fractional values for the particle interac-

tion coefficient have also been found to be useful found that the limits for Kraemer’s constant ap-
pear to range from 00.5 ° K ° 0.5. With theseand perfectly acceptable. As the interaction coef-

ficient approaches zero solute (particles) mole- limits and the definition of Kraemer’s constant
developed in this study, the solute/particle inter-cules have been shown to approach a significantly

reduced interference with each other and to effec- action coefficient was found to have a range from
0 [h] ° s ° [h] , where [h] is the Einstein typetively improve miscibility.

This study found that the generalized suspen- intrinsic viscosity.
It was also found that a maximum in the re-sion equation can also be successfully applied to

solutions. It predicts the Huggins’ equation and duced viscosity was predicted using the general-
ized viscosity model as applied to a Huggins-typethe Kraemer’s equation. It also predicts that the

sign of Kraemer’s constant is directly related to plot for solutions. The experimental literature data
of Hermans et al.28 confirmed that such a maxi-the sign of the particle interaction coefficient. It

has also been found that for good solvents the mum can exist for a Huggins-type plot. This study
also found that when the concentration at whichsolute (particle) interaction coefficient should

normally be negative. the reduced viscosity maximum approaches w r

0 for solutions and suspensions, then Kraemer’sIn general, then, it appears that the solute/
particle interaction coefficient characterizes the constant approaches K r 00.5 and the solute/par-

ticle interaction coefficient approaches s r 0[h].solubility of a solute or particle in a solvent. Sus-
pensions appear to be characterized as having a
particle interaction coefficient of s ¢ 1. Poor to The author would like to acknowledge the helpful dis-
intermediate solutions are characterized as hav- cussions with Dr. Roger S. Porter during the prepara-

tion of this article.ing a solute or particle interaction coefficients of
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